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Abstract— In this paper, a local predictor approach based on proven powerful regression algorithm which is support vector regression 
(SVR) combined with space reconstruction of time series is introduced. In addition, real value genetic algorithm (GA) has been utilized in 
the proposed method for optimization of the parameters of the SVR. In the proposed approach, the embedding dimension and the time 
delay constant for the load and price data are computed firstly, and then the continuous load and price data are used for the phase space 
reconstruction. Subsequently, the reconstructed data matrix is subject to the local prediction algorithm. Then the forecasted loads and price 
are fed into IEEE 30 bus test system for security constraint unit commitment to show the reactions of unit commitment to load and price 
forecasting errors. The proposed model is evaluated using real world dataset. The results show that the proposed method provides a much 
better performance in comparison with other models employing the same data. 

Index Terms— Load forecasting, price forecasting, local predictors, security constrained unit commitment, support vector regression, 
genetic algorithm, state space reconstruction.  

——————————      —————————— 

1 INTRODUCTION                                                                     

HORT term load forecasting (STLF) is a vital part of the op-
eration of power systems. STLF aims to predict electric loads for 

a period of minutes, hours, days, or weeks. STLF has always been a 
very important issue in economic and reliable power systems opera-
tion such as unit commitment, reducing spinning reserve, mainte-
nance scheduling, etc.  

Several STLF methods including traditional and artificial 
intelligence-based methods have been proposed during the 
last four decades. The relationship between electric load and 
its exogenous factors is complex and nonlinear, making it 
quite difficult to be modeled through traditional techniques 
such as linear or multiple regression [1], autoregressive mov-
ing average (ARMA), exponential smoothing methods [2], 
Kalman-filter-based methods [3], etc. On the other hand, vari-
ous artificial intelligence techniques were used for STLF; 
among these methods, artificial neural networks (ANNs) have 
received the largest share of attention. The ANNs that have 
been successfully used for STLF are based on multilayered 
perceptrons [4]. The neural fuzzy network has also been used 
for load forecasting [5]. Radial basis functions (RBFs) [6] have 
been also used for day-ahead load forecasting, giving better 
results than that of the conventional neural networks. 

Accurate forecasting of the electricity price has become a 

very valuable tool. This is because of the upheaval of deregu-
lation in electricity market. Short-term price forecasting in a 
competitive electricity market is still a challenging task be-
cause of the special electric price characteristics [7], [8], such as 
high-frequency, non-stationary behavior, multiple seasonality, 
calendar effect, high volatility, high percentage of unusual 
prices, hard non-linear behavior etc.  

In the literature, several techniques for short-term electrici-
ty prices forecasting have been reported, namely traditional 
and AI-based techniques. The traditional techniques include 
autoregressive integrated moving average (ARIMA) [9], wave-
let-ARIMA [10] and mixed model [11] approaches. Although, 
these techniques are well established to have good perfor-
mance, they cannot always represent the non-linear character-
istics of the complex price signal. Moreover, they require a lot 
of information, and the computational cost is very high. 

On the other hand, AI-based techniques have been used by 
many researchers for the price forecasting in electricity mar-
kets. These methods can deal with the non-linear relation be-
tween the influencing factors and the price signal, therefore 
the forecasting precision is raised. These techniques include 
neural network (NN) [12], radial basis function NN [13], fuzzy 
neural network (FNN) [14] and hybrid intelligent system (HIS) 
[15] 

 Recently, SVR [16], [17] has also been applied successfully 
to STLF and price forecasting. SVR replaces the empirical risk 
minimization which is generally employed in the classical 
methods such as ANNs, with a more advantageous structural 
risk minimization principle. SVR has been shown to be very 
resistant to the over fitting problem and give a high generali-
zation performance in forecasting problems [18].  

All the above techniques are known as global predictors in 
which a predictor is trained using all data available but give a 
prediction using a current data window. The global predictors 
suffer from some drawbacks which are discussed in our pre-
vious work [19], [20]. To overcome these drawbacks, the local 
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SVR predictor is proposed in our previous work [19]–[21] and 
can be used to solve the STLF and price forecasting problem. 

Phase space reconstruction is an important step in local 
prediction methods. The traditional time series reconstruction 
techniques usually use the coordinate delay (CD) method [22] 
to calculate the embedding dimension and the time delay con-
stant of the time series [23]. 

Although local SVR (LSVR) method gives good prediction 
accuracy when it is applied to STLF and price forecasting, it 
has a serious problem. This problem is that there is a lacking 
of the structural methods for confirming the selection of SVR’s 
parameters efficiently. So, in this paper, a local predictor ap-
proach based on proven powerful regression algorithm which 
is SVR combined with space reconstruction of time series is 
introduced. In addition, real value genetic algorithm (GA) has 
been utilized in the proposed method for optimization of the 
parameters of the SVR. The proposed algorithm is called evo-
lutionary optimized LSVR (EOLSVR). 

 Unit commitment problem (UC) is a nonlinear, mixed in-
teger combinatorial optimization problem. The UC problem is 
the problem of deciding which electricity generation units 
should be scheduled economically in a power system in order 
to meet the requirements of load and spinning reserve. It is a 
difficult problem to solve in which the solution procedures 
involve the economic dispatch problem as a sub-problem. 
Since UC searches for an optimum schedule of generating 
units based on load forecasting data, the improvement of load 
forecasting is first step to enhance the UC solution [24].  

In this paper, we propose security constrained unit com-
mitment (SCUC) method to reduce the production cost by 
combining load and price forecasting with UC problem. First, 
short-term loads and price are forecasted using EOLSVR, local 
SVR and local RBF models. Then UC problem is solved using 
the dynamic programming method.  

We have chosen the historical data for the South Australia 
electricity market, which includes the power demand and 
price for the period of 2003-2005. Historical weather data was 
collected from Macquarie University Web Site. Then the fore-
casted loads and price are fed into IEEE 30 bus test system for 
unit commitment to show the reactions of unit commitment to 
forecasting errors.  

The paper is organized as follows: Section 2 review the 
time series reconstruction method. Section 3 gives a brief dis-
cribtion about GA. A review of the SCUC problem and its 
formulation are presented briefly in Section 4. The proposed 
method is presented in details in Section 5. Applications and 
simulations for load and price forecasting and UC problem are 
given in Sections 6. Finally, Section 7 concludes the work. 

2 TIME SERIES RECONSTRUCTION  
Nonlinear time series analysis and prediction have be-

come a reliable tool for the study of complex time series and 
dynamical systems. A commonly used tool is the phase space 
reconstruction technique which stems from the embedding 
theorem developed by Takens and Sauer [22], [25]. It illus-
trates clearly the phase space trajectory of a time series in the 

embedded space instead of the trajectory in the time domain. 
The theorem regards an 1-dimensional time series x(t) for t = 
1, 2, ...,N as compressed higher dimensional information and, 
thus, its features can be extracted by extending x(t) to a vector 
X(t) in a d-dimensional space as follows: 

 
                                                                                                  (1) 
 
where d denotes the embedding dimension of the system 

and m is the delay constant. Based on Takens’ theorem [22], to 
obtain a faithful reconstruction of the dynamic system, the 
embedding dimension must satisfy d2 ≥ Da +1, where Da is the 
dimension of the attractor. In order to obtain an appropriate 
model reconstruction, it is necessary to estimate d and m. 

The correlation dimension method [26] is the most popu-
lar method for determining d because of its computational 
simplicity. The mutual information method proposed in [27] 
usually provides a good criterion for the selection of m. In 
general, the proper value of m corresponds to the first local 
minimum of mutual information. In this paper, the correlation 
dimension method [26] and the mutual information method 
[27] are used to calculate d and m respectively. The details of 
how to choose the proper values of d and m using these two 
methods have been reported in [19]. 

3 GENETIC ALGORITHM  
The GA is a search algorithm for optimization, based on 

the mechanics of natural selection and genetics [28], [29]. The 
GA is able to search very large solution spaces efficiently by 
providing a lower computational cost, since they use probabil-
istic transition rules instead of deterministic ones. GA has a 
number of components or operators that must be specified in 
order to define a particular GA. The most important compo-
nents are representation, fitness function, selection method, 
crossover, mutation and termination.  

The GA starts with an initial population of individuals 
(generation) which are generated randomly. Every individual 
(chromosome) encodes a single possible solution to the prob-
lem under consideration. The fittest individuals are selected 
by ranking them according to a pre-defined fitness function, 
which is evaluated for each member of this population. The 
individuals with high fitness values therefore represent better 
solution to the problem than individuals with lower fitness 
values. 

There are many different selection operators presented by 
some researchers such as stochastic sampling with replace-
ment”roulette wheel selection” and tournament selection [30]. 
Following this initial process, the crossover and mutation op-
erations are used where the individuals in the current popula-
tion produce the children (offspring). The idea behind the 
crossover operator is to combine useful segments of different 
parents to form an offspring that benefits from advantageous 
bit combinations of both parents [31]. While, by mutation, in-
dividuals are randomly altered. These variations (mutation 
steps) are mostly small [31]. Normally, offspring are mutated 
after being created by crossover. It is intended to prevent 
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premature convergence and loss of genetic diversity. A new 
population of individuals (generation) is then formed from the 
individuals in current population and the children. This new 
population becomes the current population and the iterative 
cycle is repeated until a termination condition is reached [28]. 

4 SECURITY CONSTRAINT UNIT COMMITMENT (SCUC) 
The objective of security-constrained unit commitment 

(SCUC) discussed in this work is to obtain a unit commitment 
schedule at minimum production cost without compromising 
the system reliability. The reliability of the system is interpret-
ed as satisfying two functions: adequacy and security. In sev-
eral power markets, the independent system operator ISO 
plans the day-ahead schedule using (SCUC)[32], [33].  

The traditional unit commitment algorithm determines 
the unit schedules to minimize the operating costs and satisfy 
the prevailing constraints such as load balance, system spin-
ning reserve, ramp rate limits, fuel constraints, multiple emis-
sion requirements and minimum up and down time limits 
over a set of time periods. The scheduled units supply the load 
demands and possibly maintain transmission flows and bus 
voltages within their permissible limits [34]. However, in cir-
cumstances where most of the committed units are located in 
one region of the system, it becomes more difficult to satisfy 
the network constraints throughout the system.  

Mathematically, the objective function, or the total operat-
ing cost of the system can be written as follows [32], [33]: 

                               

( ) ( )[ ]








∑ ∑
= =

−−+
T

t

N

i
t
iut

iSt
iPiFt

iu
it

t
i uP 1 1

11min         (2) 

where t
iP is the output power of unit i at period t, t

iu  is 
the commitment state of unit i at period t, ( )t

ii PF  is the fuel 
cost of unit i at output power t

iP , t
iS is the start up price of 

unit i at period t, N is the number of generating unit and T is 
the total number of scheduling periods. 

The constraints are as follows: 
Power balance: 

                                                                   (3) 
   
 
where Dt is the customers’ demand in time interval t. 

Generating limits: These limits define the region within 
which a unit must be dispatched. 
 

                                                                                                  (4) 
 

Minimum up time: Once the unit is committed, it must be 
kept running for certain number of hours, called the minimum 
up time, before allowing turning it off. This can be formulated 
as follows: 

                                                                                     
 
                                                                                                  (5) 

 
where, t

ionX , is the number of hours the unit has been on 
line and up

iT is the minimum up time. 
Minimum down time: Once the unit is turned off, it is not 
allowed to be brought online again before spending certain 
number of hours called minimum down time. This can be 
formulated as follows: 

                                 
 
 
                                                                                                  (6) 
 
where t

ioffX , is the number of hours the unit has been off 
line and down

iT is the minimum down time. 
Spinning reserve: It can be modeled as follows: 

                                       
                                                                                                          (7) 

 
where tR is the spinning reserve requirements.   

Transmission flow limit from bus k to bus m: 
                                                                                            

               (8) 
 
where P(t) is the real power generation vector and φ(t) is 

the phase shifter control vector at time T. 
 
The Start up cost which can be modeled by the following 

form: 
                                                             
 
 
 

(9) 
 
where, ii CSHS , is the unit’s hot/cold start up cost and 
iCH is the cold start hour. 
 
Fuel cost functions ( )t

ii PF  is frequently represented by 
the following polynomial function: 

                                                             
             (10) 

 
where iii cba ,,  are the coefficients for the quadratic cost 

curve of generating unit i. 

5 EVOLUTIONARY OPTIMIZED LOCAL SUPPORT VECTOR 
REGRESSION (EOLSVR)  

5.1 Support Vector Regression (SVR) 
The basic idea of SVR is to map the data x into a high di-

mensional feature space via a nonlinear mapping, and per-
form a linear regression in that feature space [17] as: 

 
( ) bxwxf += ,      (11) 
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Where 〈., .〉 denotes the dot product, w contains the coeffi-
cients that have to be estimated from the data and b is a real 
constant. Using Vapink’s ε–insensitive loss function [16], the 
overall optimization is formulated as: 

 
 
 
 
 
 
                  (12) 
 
 

where, xi is mapped to higher dimensional space by the 
function φ, ε is a real constant, iξ and iξ * are slack variables 
subject to ε-insensitive zone and the constant C determines the 
trade-off between the flatness of f and training errors. 

Introducing Lagrange multipliers αi and αi* with αi αi*=0 
and αi, αi*=0 for i=1,…,N, and according to the Karush-Kuhn-
Tucker optimality conditions [17], the SVR training procedure 
amounts to solving the convex quadratic problem: 

 
 
 
 
 
 
      
                                                                                        (13) 
 
 

The output is a unique global optimized result that has 
the form: 

 
                  (14) 
 
 

where, Q(xi,x)= φ(xi). φ (x). Using kernels, all necessary 
computations can be calculated directly in the input space, 
without computing the explicit map φ(x). Various kernel types 
exist such as linear, hyperbolic tangent, Gaussian, polynomial, 
etc. [17]. Here, we employ the commonly used Gaussian ker-
nel which can be as defined as following: 

 
                                                                                          (15) 
 

5.2 Local predictors 
Local prediction is concerned with predicting the future 

based only on a set of K nearest neighbors in the reconstructed 
embedded space without considering the historical instances 
which are distant and less relevant. Local prediction con-
structs the true function by subdivision of the function domain 
into many subsets (neighborhoods). Therefore, the dynamics 
of time series can be captured step by step locally in the phase 
space and the drawbacks of global methods can be overcome. 

The local SVR (LSVR) and local RBF (LRBF) methods can 
be summarized as follows [19]: 

First, reconstruct the time series as described in the previ-
ous section. For, each query vector q, the K nearest neighbors 
{zq1,zq2,...,zqK} among the training inputs is choosing using the 
Euclidian distance as the distance metric between the q and 
each z in the reconstructed time series. Using these Knearest 
neighbors, train the SVR (or RBF) to obtainsupport vectors and 
corresponding coefficients. Finally, the output of SVR (or RBF) 
can be computed. 

5.3 EOLSVR 
There are some key parameters for SVR, which are C, ε 

and σ in the Gaussian kernel function. The selection of these 
parameters is important to the generalization of the predic-
tion. Inappropriate parameters in SVR lead to overfitting or 
under-fitting [35]. Therefore, these parameters must be chosen 
carefully. However choosing the optimal parameters is a very 
important step in SVR, there are no general guidelines availa-
ble to select these parameters till now. The problem of optimal 
parameters selection is very complicated because the complex-
ity of SVR (and hence its generalization performance) depends 
on all three parameters together. Thus, a separate selection of 
each parameter is not adequate to get an optimal regression 
model. 

There are many trials to choose the SVR’s parameters. 
Various authors have selected these parameters by experience 
[16], [36] but this method is not suitable for nonexpert users. 
The grid search optimization method has been proposed by 
Scholkopf and Smola [37] to get the optimal parameters of 
SVR. However, this method is time consuming. The cross val-
idation method has been also used to select the SVR’s parame-
ters [36]. This method is very computationally intensive and 
data-intensive. Pai and Hong proposed a GASVR model [38] 
to optimize the SVR’s parameters in which the parameters are 
encoded as a binary code. This method suffers from some 
problems. The first one is that encoding the parameters as bi-
nary code will lead to integer valued solutions and may suffer 
from the lack of accuracy [29]. In addition, if the length of the 
string is not long enough, it might be possible for the GA to 
get near to the region of the global optimum but never will 
arrive at it. 

As evident from above, there is a lacking of the structural 
methods for confirming the selection of SVR’s parameters effi-
ciently. Therefore, a real value GA is proposed in this work to 
select the SVR’s parameters of local SVR method which simul-
taneously optimizes all SVR’s parameters from the training 
data. The steps for load and price forecasting based on the 
proposed method can be summarized as following: 
• Step 1: Reconstruct the time series: Load the multivar ate 

time series dataset X = (x1(t), x2(t), ..., xM(t)), (t =1, 2, ...,N). 
Using the correlation dimension method and the mutual 
information method, calculate the embedding dimension d 
and the time delay constant m for each time series data set. 
Then, reconstruct the multivariate time series using these 
values. 

• Step 2: Form a training and validation data: The input da-
taset after reconstruction X~  is divided into two parts, that 
is a training 

trX~ dataset and validation 
vaX~ dataset. The 
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size of the training dataset is Ntr while the size of the vali-
dation dataset is Nva. 

• Step 3: For each query point xq, choosing the K nearest 
neighbors of this query point using the Euclidian distance 
between xq and each point in Xtr (1 < K<<<

trX~ ). 
• Step 4: Representation and generation of initial population: 

In real value GA the real value parameters can be used di-
rectly to form the chromosome. This means that the chro-
mosome representation in real value GA is straightfor-
ward. In this case, the three parameters C, ε and σ are di-
rectly coded to generate the chromosome CH = {C, ε, σ}. 
These chromosomes are all randomly initialized. 

• Step 5: Evaluation: each chromosome is evaluated using 
the fitness function which measures the performance of the 
model. It is quite important for evolving systems to find a 
good fitness measurement. The fitness (F) of each chromo-
some evaluated using mean absolute percentage error 
(MAPE) defined as: 

∑
=

×
−

=
vaN

i i

ii

va A
FA

N 1
1001MAPE                      (16) 

where Ai and Fi are the actual value and the forecasted 
value, respectively, Nva is the validation dataset size, and i 

denotes the test instance index. 
• Step 6: Selection: A standard roulette wheel selection 

method is employed to select the fittest chromosomes from 
the current population. 

• Step 7: Crossover: The operator of crossover can now be 
implemented to produce two offspring from two parents 
which are chosen using the roulette wheel selection meth-
od. In this work, the line arithmetical crossover is used [28]. 

• Step 8: Mutation: Similarly, the mutation operation can 
contribute effectively to the diversity of the population. In 
this work, the Gaussian mutation [28] is used. 

• Step 9: Elitist strategy: The chromosome that has the worst 
fitness value in the current generation is replaced by the 
chromosome that has the best fitness value in the old gen-
eration 

• Step 10: Check the stopping criterion: The modelling can be 
terminated when the stopping criterion is reached. In this 
work, we use a predetermined maximum number of gen-
erations as a termination condition. If the stopping criteri-
on is not satisfied, the model has to be expanded, the steps 
5 to 9 can be repeated until the stopping criterion is satis-
fied. 

• Step 11: After the termination condition is satisfied, the 
chromosome which gives the best performance in the last 
generation is selected as the optimal values of SVR’s pa-
rameters. 

• Step 12: Train SVR: The K nearest neighbors of the query 
point and the optimized parameters are used to train the 
SVR algorithm. 

• Step 13: Calculate the prediction value of the current query 
point using equation (14). 

• Step 14: Then, the steps 3 to 13 can be repeated until the 
future values of different query points are all acquired. 

6 EXPREMENT RESULTS 
In this paper, the performance of the EOLSVR is tested and 

compared with local SVR and local RBF using hourly load 
price and temperature data in South Australia. The load data 
used includes hourly load and price for the period of 2003-
2005 for the South Australia electricity market. While the 
hourly temperature for the same period is collected from 
Macquarie university web site. 

6.1 Parameters 
To implement a good model, there are some important pa-

rameters to choose. Choosing the proper values of d and m is a 
critical step in the algorithm. The correlation dimension meth-
od and the mutual information method are used to select d 
and m, respectively, and the optimal values of these parame-
ters are shown in Table 1. Using the obtained values of d and 
m, the multivariate time series can be reconstructed as de-
scribed in Section 2. 

 
TABLE 1 

PHAE RECONSTRUCTION PARAMETERS 

 
Choosing K is very important step in order to establish the 

local prediction model. There are some methods used in litera-
tures to find this parameter. In this paper K is calculated using 
a systematic method which is proposed by us in [20]: 
 

                                                                                                        (17) 
 

 
where, N is the number of training points, kmax is the max-

imum number of nearest neighbors, Dk(xi) is the distance be-
tween each training point x and its nearest neighbors while 
Dmax is the maximum distance,  

 

is the average distance around the points which is inversely 
proportional to the local densities and α is a constant. The two 
constants kmax and α are very low sensitivity parameters. kmax  
can be chosen as a percentage of the number of training points 
(N) for efficiency while α can be chosen as a percentage. In this 
paper, kmax and  α are always fixed for all test cases at 70% of N 
and 95, respectively. 

6.2 Forcasting Accuracy Evaluation 
For all performed experiments, we quantified the predic-

tion performance with the Mean Absolute Error (MAE) and 
Mean Absolute Percentage Error (MAPE). They can be defined 
as follows: 

                                       
             (18) 
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                    (19) 
 
where, A and F are the actual and the forecasted loads, re-

spectively, n is the testing dataset size, and i denotes the test 
instance index. 

6.3 Results and Discussion 
The performance of the evolutionary optimized local SVR 

(EOLSVR) is tested and compared with local SVR and local 
RBF using hourly load, price and temperature data in South 
Australia.  

To make results comparable, the same experimental setup 
is used for the three predictors. That is the week of February 
15-21, 2005 has been used as a testing week. The available 
hourly load and temperature data (for the period of 2003-2005) 
are used to forecast the load of testing week. Also, the availa-
ble hourly price and temperature data (for the period of 2003-
2005) are used to forecast the price of testing week. 

First, we calculate the MAE and MAPE of each day during 
the testing week. Then the average MAE and MAPE values of 
each method for the testing week are calculated. The results 
are shown in Tables 2 and 3. 

 
These results show that, the EOLSVR method outperforms 

local SVR and local RBF. Table 4 shows the MAE improve-
ments of the EOLSVR method over local SVR and local RBF. 
While Table 5 shows the MAPE improvements of the EOLSVR 
method over local SVR and local RBF. These results show the 

superiority of the proposed method over other methods.  
 

 
Figures 1-3 show the actual load and forecasted load val-

ues using local RBF, local SVR and EOLSVR, respectively for 
the testing week.  

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 5 
IMPROVEMENT OF THE EOLSVR OVER OTHER APPROACHES 

REGARDING MAPE 
 Load  Forecasting Price Forecasting 

MAPE Improvement MAPE Improvement 

EOLSVR 0.94 -- 1.90 -- 

Local RBF 2.3 59.13% 3.79 49.86% 

Local SVR 1.55 39.35% 2.96 35.81% 

 

TABLE 3 
Price Forecasting Results 

 Local RBF Local SVR EOLSVR 
MAE (GW) 0.0322 0.0220 0.0140 
MAPE (%) 3.79 2.96 1.90 

 

TABLE 2 
LOAD FORECASTING RESULTS 

 Local RBF Local SVR EOLSVR 
MAE (GW) 0.0314 0.0213 0.0132 
MAPE (%) 2.3 1.55 0.94 

 

TABLE 4 
IMPROVEMENT OF THE EOLSVR OVER OTHER APPROACHES 

REGARDING MAE 
 Load  Forecasting Price Forecasting 

MAE Improvement MAE Improvement 

EOLSVR 0.0132 -- 0.0140 -- 

Local RBF 0.0314 57.96% 0.0322 56.52% 

Local SVR 0.0213 38.02% 0.0220 36.36% 

 

 

 

Fig. 1 Forecasted and actual hourly load from 15th to 21st February 
2005 using local RBF 

 

 

 

Fig. 2 Forecasted and actual hourly load from 15th to 21st February 
2005 using local SVR 
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The results of load and price forecasting are fed into the 
IEEE 30 bus test system. The IEEE 30 bus test system is used 
with a total of 6 generators and 41 lines. Table 6 shows the test 
system data. The spinning reserve is assumed to be 10% of the 
demand. The actual loads (24 hour) as well as the forecasted 
loads are given in Table 7. 

If the initial commitment state of a generator is 1, it means 
this generator is on and zero indicates this generator is off. The 
IEEE 30 bus test system has 41 lines. Each line can transmit a 
maximum power flow in MW. Table 8 shows the maximum 
power flow for each line 

Feasible unit combination and total cost (TC) values of the 
test system using dynamic programming method for load val-
ues and forecasting load values are given in Table 9. It is clear 
that accurate load forecasting is very important for the UC 
solution. The total cost of the forecasting load values for local 
RBF method is more than that of actual load values by 
$13140.6. Additionally, the total cost of the forecasting load 
values for local SVR is more than that of actual load values by 
$5016. Whereas the total cost of the forecasting load values for 
EOLSVR is more than that of actual load values by $3341.1. 

7 CONCLUSION 
In this paper, we have proposed EOLSVR method for elec-

trical load and price forecasting. After that the results of load 
and price forecasting are used to solve the security constraint 
unit commitment problem.  

The proposed method combines a proven powerful regres-
sion algorithm which is SVR with a local prediction frame-
work. For data preprocessing, the embedding dimension and 
the time delay constant for the input data are computed firstly, 
and then the continuous load and price data are used for the 
phase space reconstruction. In addition, the neighboring 
points are presented by Euclidian distance. According to these 
neighboring points, the local model is set up. The local predic-
tors can overcome the drawbacks of the global predictors by 
involving more than one model to utilize the local infor-
mation. Therefore, the accuracy of the local predictor is better 

than the global predictor in which only one model is engaged 
for all available data that contains irrelevant patterns to the 
current prediction point. In addition, to set the SVR’s parame-
ters appropriately, a new method is proposed. This method 
adopts real value GA to seek the optimal SVR’s parameters 
values and improves the prediction accuracy. Then the fore-
casted loads and price are fed into IEEE 30 bus test system for 
security constraint unit commitment to show the reactions of 
unit commitment to load and price forecasting errors. 

Dynamic programming method is used for solving the UC 
problem. Total costs are calculated for load data which is tak-
en from South Australia electricity market and forecasting 
load and price data computed by local RBF, local SVR and 
EOLSVR, separately. Comparing these total costs show that 
accurate load forecasting is important for UC. Over-prediction 
of STLF wastes resources since more reserves are available 
than needed and, in turn, increases the operating cost. On the 
other hand, under-prediction of STLF leads to a failure to pro-
vide the necessary reserves which is also related to high oper-
ating cost due to the use of expensive peaking units. 
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TABLE 6 

TEST SYSTEM DATA 

  Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

Pmax (MW) 500 400 250 250 200 350 

Pmin (MW) 200 50 50 50 25 50 

a ($/h) 10 10 20 10 20 10 

b ($/MWh) 200 150 180 100 180 150 

c ($/MWh2) 100 120 40 60 40 100 
up

iT (h) 5 4 3 3 1 4 
down

iT (h) 3 2 2 2 1 2 

Start up cost 200 100 80 80 30 95 

Initial state 1 0 1 1 0 0 
 

 
 

 

TABLE 7 
ACTUAL LOAD OF 6 UNITS 24 HOUR TEST SYSTEM AND THE FORECASTED LOADS USING LRBF, LSVR AND EOLSVR 

  

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Lo
ad

s 
(G

W
) Actual 1.33 1.19 1.05 1.00 0.96 0.98 1.00 1.04 1.12 1.19 1.24 1.30 1.32 1.32 1.30 1.31 1.34 1.36 1.35 1.35 1.38 1.32 1.28 1.38 

LOCAL RBF 1.37 1.28 1.14 1.05 0.96 0.98 1.04 1.10 1.12 1.23 1.28 1.39 1.32 1.31 1.31 1.34 1.36 1.37 1.32 1.34 1.39 1.33 1.22 1.40 

LOCAL SVR 1.35 1.24 1.09 1.03 0.96 0.98 1.03 1.08 1.15 1.23 1.28 1.33 1.30 1.31 1.30 1.29 1.35 1.36 1.33 1.34 1.38 1.33 1.30 1.40 

EOLSVR 1.34 1.20 1.07 1.00 0.96 0.98 1.03 1.06 1.15 1.20 1.28 1.33 1.30 1.31 1.30 1.30 1.34 1.36 1.35 1.34 1.38 1.32 1.27 1.39 
 
 
 

 
 

TABLE 8 
MAXIMUM POWER FLOW FOR EACH LINE IN THE TEST SYSTEM (MW) 

L1 650 L11 325 L21 80 L31 80 L41 160 
L2 650 L12 160 L22 80 L32 80 

 

L3 325 L13 325 L23 80 L33 80 
L4 650 L14 325 L24 80 L34 80 
L5 650 L15 325 L25 80 L35 80 
L6 325 L16 325 L26 160 L36 325 
L7 450 L17 160 L27 160 L37 80 
L8 350 L18 160 L28 160 L38 80 
L9 650 L18 160 L29 160 L39 80 
L10 160 L20 80 L30 80 L40 160 
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TABLE 9 
FEASIBLE UNIT COMBINATION OF TEST SYSTEM FOR ACTUAL LOAD AND FORECASTING LOAD VALUES USING LOCAL RBF, LOCAL SVR AND 

EOLSVR 
 

Hour Feasible UC 
(Actual load) 

Feasible UC 
(Local RBF) 

Feasible UC 
(Local SVR) 

Feasible UC 
(EOLSVR) 

1 1 1 1 1 1 0 1 0 0 0  1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0  

2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0  1 1 1 1 1 0 1 0 0 0 

3 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0  1 1 0 1 1 0 0 0 0 0 

4 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 

5 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 

6 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 

7 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 

8 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 

9 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0  

10 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

11 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

12 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

13 1 1 1 1 1 1 0 0 0 0  1 1 1 1 1 1 0 0 0 0  1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

14 1 1 1 1 1 1 0 0 0 0  1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

15 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

16 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

17 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

18 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 

19 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 

20 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 

21 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 

22 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 

23 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 

24 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 

TC $ 606165.3  $ 619305.9 $ 611181.5 $ 609506.4 
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